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Abstract—Sending only the viewport of interest provides a
solution for 360-degree video streaming under the current
bandwidth-constrained infrastructure. To this end, the user
viewport requires to be prefetched in advance by conducting
viewport prediction. To more accurately capture the nonlinear
and long-term dependent relation between the future and past
viewports, we develop a single viewport prediction model using
convolutional neural network (CNN), in which the pooling layers
are dropped and more convolutional layers are added for stronger
nonlinear fitting ability. Further, we design a viewport trajectory
prediction model based on recurrent neural network (RNN)
which learns long-term dependency in sequential viewports.
Specially, it is capable to estimate future viewport trajectory
and support variable-size prediction window with low complexity.
Finally, a correlation filter-based viewport tracker (CFVT) is
proposed to perform content-aware viewport prediction. The
combination of the RNN and the CFVT through a fusion model
enables them to complement each other which is validated by
significant improvement in prediction accuracy.

I. INTRODUCTION

In recent years, watching 360-degree videos with interactive
displaying systems, such as head-mounted display (HMD)
has become increasingly popular. Compared to traditional
videos, 360-degree videos provide users with a panoramic
scene captured by an omnidirectional camera. When watching
360-degree videos, the user can obtain immersive experience
by freely adjusting his viewing orientation. However, 360-
degree videos have huge file size and ultra high resolution, and
the delivery of a 360-degree video consumes up to six times
the bandwidth of a traditional video. For current bandwidth-
constrained infrastructure, in particular for mobile networks,
it is hard to send the entire 360-degree video to the users.
Therefore, how to efficiently utilize the network bandwidth
and provide immersive experience guarantees is challenging
for 360-degree video streaming.

In practice, constrained by the field of view (FoV) of the
HMD, the user at any time can view a small portion of the
video content, also called the viewport of the user. Thus,
streaming only the viewport of interest and switching it in
terms of the head motion of the user will be a more efficient
bandwidth utilization. As the motion-to-photon latency re-
quired for VR applications is 15-20 ms for a better experience,
which is much smaller than the round trip time (RTT) between
a viewing device and its nearby server, usually 30-50 ms
[1]. Therefore, the user viewport requires to be prefetched in
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Fig. 1. Head rotation angles

advance by conducting viewport prediction. Specifically, view-
port prediction refers to predicting the user’s future viewport,
e.g. the viewport at time t+tw, on the basis of his current and
past viewports. Here, tw represents the size of the prediction
window.

To conduct viewport prediction, a general approach is to
extrapolate future viewport using historical viewports. For
instance, the Naive model proposed in [2][3] directly utilized
the current viewport to replace the future viewport. Y. Bao
et al. [3] proposed linear regression (LR) and neural network
(NN) to fit the variation of the user viewport. R. Azuma et al.
[4] characterized the head motion as position, velocity and
acceleration, and proposed a predictor to derive the future
head position. A. D. Aladagli et al. [5] and V. Sitzmann et al.
[6]took content-related features into account, and predicted the
viewport based on saliency algorithm. As a variety of factors,
such as the preference, occupation, gender, age, etc., would
influence the viewport of interest, the relationship between
the future and historical viewports can be characterized as the
nonlinearity and long-term dependency, The existing methods
fail to well capture these two main properties, resulting in un-
desirable performance with respect to the prediction accuracy.

To improve the prediction accuracy, we develop a viewport
prediction model using convolutional neural network (CNN).
We abandon the pooling layers, then add more convolutional
layers so as to obtain stronger nonlinear fitting ability. Exper-
imental results show that our model outperforms the previous
works, especially for the large-size prediction window. To the
best of our knowledge, the CNN-based viewport prediction
has never been studied in the literature.

Further, besides anticipating the viewport at some future



point, we extend out study to predict the viewport sequence
in a future duration, also called viewport trajectory. Although
the viewport trajectory prediction can be realized by a series
of the proposed CNN models, with each of them predicting
one point of the trajectory, such models are only suitable for
fixed-size prediction window. When the adjustment of window
size is asked to adaptively match the speed of head motion,
all the CNN models have to be re-trained. To achieve a low
complexity trajectory prediction that supports variable-size
prediction window, we design a viewport trajectory prediction
model based on recurrent neural network (RNN). It learns
long-term dependency information in sequential viewports and
outputs the estimation of viewport sequence within a future
duration.

Finally, to explore the correlation between the viewport and
the video content, a correlation filter-based viewport tracker
(CFVT) is proposed to perform content-aware viewport pre-
diction. The combination of the RNN and the CFVT through
a fusion model enables them to complement each other, which
achieves the prediction accuracy improvement up to 40%.

II. CNN-BASED SINGLE VIEWPORT PREDICTION

When watching a 360-degree video, the user wearing a
HMD is supposed to stand at the center of the sphere, with his
viewport in the spherical space recorded by the Euler angles,
i.e., pitch (θ), yaw (ϕ), and roll (ψ), corresponding to the head
rotation around the X , Y and Z axis, respectively. Knowing
θ and ϕ, we can find the center point of the viewport, namely
the viewpoint. Further, combining the viewpoint and roll angle
ψ, we can determine the spherical region of the viewport, as
shown in Fig. 1. Define the initial head rotation as zero degree
for these three angles, then each angle rotates in a range of
[−180◦, 180◦]. In reality, the ranges of θ and ϕ are determined
by the FoV of the HMD. For example, the FoV of Oculus DK2
is 110-degree horizontally and 90-degree vertically.

The experimental results in [3] show that, compared with
the auto-correlations of these three angles, their correlations
are much smaller and negligible. Therefore, we assume that the
rotations in three directions are independent with each other.
It means that we can predict each angle independently and
train three separate models to predict θ, ϕ and ψ respectively.
Moreover, when the user moves his head, the yaw angle varies
much more drastically than the other two angles, and therefore
is more difficult to predict. Thus, in this paper, we focus on the
prediction of the yaw angle ϕ. Note that the proposed approach
can be straightforwardly extended to predict the pitch and roll
angle.

The design of a CNN-based single viewport prediction
model aims at building a CNN model that takes the current
and past viewing angles (i.e. the features) as the inputs and
outputs the future viewing angle. Let ϕt represent the yaw
angle at time t, and ϕϕϕt−ts:t = (ϕt−ts , ..., ϕt−1, ϕt) be the yaw
angles from time t − ts to time t that are collected from the
head sensor. The task of the CNN model comes to predict the
yaw angle ϕt+tw at some future point t + tw based on the

𝜑𝑡−𝑡𝑠

conv1, 32 
conv2, 64 

conv3, 64 
fc, 2 

 𝜑𝑡+𝑡𝑤

𝑔(⋅) 𝑔−1(⋅)

yaw

pitch

roll

𝑌

𝑋

𝑍

𝜑𝑡−1
𝜑𝑡

…

viewport

Fig. 2. CNN-based single viewport prediction model

value of ϕϕϕt−ts:t, as shown in Fig. 2. Here, ts is the size of
the input, and tw is the size of the prediction window.

According to our angle definition, −180◦ and 179◦ just have
a difference of 1◦ instead of 359◦. To avoid this issue, we make
an angle transformation, and use vt = (vst , v

c
t ) rather than ϕt

as the input. That is

g(ϕt) = (sin(ϕt), cos(ϕt)) , (vst , v
c
t ) (1)

Before outputting the prediction result, we make the in-
verse transformation and obtain ϕt from vt. Namely, ϕt =
arctan(vst /v

c
t ).

Since the value of ϕt+tw exhibits strong nonlinear correla-
tion with ϕϕϕt−ts:t, we abandon the pooling layers to construct
more convolutional layers so as to obtain stronger nonlinear
fitting ability. We set all the kernel size to 3 and stride size to
1 without padding. Therefore, the depth of the network only
depends on the input size. To find the optimal input size, we
try the input size to be 5, 7, 10, 12, 15, and the convolutional
layers to 2, 3, 3, 5, 7, respectively. We find that all the CNN
models with different input sizes perform better than baseline
models, and the prediction accuracy is highest when the input
size is set to 10.

The values of vst and vct range from −1 to 1. Therefore, we
choose tanh as the activation function of the fully connected
layer since its output ranges from −1 to 1. For all the
convolutional layers, we set the activation function to be
Recetified Linear Unit (ReLU), i.e., f(x) = max(0, x). In this
work, we use mean squared error (MSE) as the loss function.

III. RNN-BASED CONTENT-AWARE VIEWPORT
TRAJECTORY PREDICTION

In this section, we investigate the viewport trajectory
prediction, i.e., simultaneously predict multiple yaw angles
ϕϕϕt+1:t+tw = (ϕt+1, ϕt+2, ..., ϕt+tw) in a duration of tw. If
the user’s head moves slightly, we can have a large prediction
window tw. In contrast, if the head moves at a very fast speed,
the window size would set to be small. Therefore, the viewport
trajectory prediction with a variable-size prediction window tw
is critical. RNN is an ideal tool for variable-length sequence
learning. Moreover, since the future viewports not only depend
on the past viewports, but have a close relation with the video
content, we propose a RNN-based content-aware trajectory
prediction model. It consists of three modules, i.e., RNN



module, CFVT module and fusion module, as shown in Fig. 3.
The RNN module learns the trajectory information from the
past viewport. The CFVT module captures the relationship
between the video content and the trajectory. The fusion
module combines the prediction results of the RNN and CFVT
module.

A. RNN-based Trajectory Prediction

The RNN module takes the current viewport ϕt as the input,
and outputs the predicted trajectory ϕ̂ϕϕr

t+1:t+tw . During training
process, at time step i, we first encode ϕi value into the 128-
dimensional vector, then take the embedding vector xi as the
input, computes hidden states hi and then outputs ϕr

i through
the following equations:

xi = σ1(Wxvg(ϕi) + bx) (2)
hi = σ2(Whxxi +Whhhi−1 + bh) (3)
yi = Wohhi + bo (4)

ϕ̂r
i+1 = g−1(yi) (5)

where Wxv , Whx, Whh and Woh are the learnable weights,
bx, bh and bo are the learnable biases. During testing process,
we provide the ground-truth of ϕi at the first iteration. For
the following iterations, the inputs are the predicted results
obtained from the latest iteration, i.e., ϕi = ϕ̂r

i . Here, σ1(·)
and σ2(·) are the activation functions. Specifically, σ1(·) is
ReLU function and σ2(·) is tanh function.

B. Content-aware Trajectory Prediction

Besides the past viewport, the video content also influ-
ences the head motion. To model the correlation between the
viewport and the video content, we can design a correlation
filter which has peak response to the viewport area in the
whole spherical image. Following the correlation filters with
weighted convolution responses (CFWCR) algorithm [7], we
propose a correlation filter-based viewport tracker (CFVT) to
track the viewports in the future frames.

Correlation filter-based trackers such as CFWCR are de-
signed for tracking the specific target in a normal video. The
objective to be tracked in this paper is the viewport that is more
abstract than a target. Thus, we first project the spherical image
into a planar image using the equirectangular projection (ERP),
then find the viewport region in the planar image. For the ERP,
the content near the poles will be expanded horizontally, and
the viewport is not rectangular in the tangent planes, so the
region of the viewport needs to be redefined. To do that, we
set a bounding box around the center point of the viewport,
representing the viewport region in the planar image.

C. Model Fusion of RNN and CFVT

The fusion module is to combine together the prediction
results of the RNN and CFVT module and output the final
viewport trajectory. That is

ϕ̂ϕϕt+1:t+tw = www1 � ϕ̂ϕϕr
t+1:t+tw +www2 � ϕ̂ϕϕc

t+1:t+tw (6)

where ϕ̂ϕϕt+1:t+tw is the final result, ϕ̂ϕϕr
t+1:t+tw and ϕ̂ϕϕc

t+1:t+tw
are the outputs of the RNN and CFVT module respectively,

…

…

…

R
N

N

R
N

N

R
N

N…

…

…

CFVT

𝜑𝑡

FUSION LAYER

 𝜑𝑡+1
𝑟

𝐹𝑡+1 𝐹𝑡+2 𝐹𝑡+𝑡𝑤

𝒘1 𝒘2

 𝜑𝑡+𝑡𝑤
𝑟  𝜑𝑡+1

𝑐  𝜑𝑡+2
𝑐  𝜑𝑡+𝑡𝑤

𝑐

 𝜑𝑡+1  𝜑𝑡+2  𝜑𝑡+𝑡𝑤

 𝜑𝑡+2
𝑟

Fig. 3. RNN-based content-aware viewport trajectory prediction model, where
Fi represents the frame at time step i.

� is the element-wise multiplication, and www1 and www2 are the
weights satisfying www1 +www2 = 111.

For the CFVT module, as we do not update the filter, the
gap between the estimated result and the real value would
gradually enlarge arising from the accumulated prediction
errors. It means that the prediction errors of the tracker
increases with the prediction window size. Therefore, for the
large prediction window j, we would have a small weight w2,j

for the CFVT module, and vice versa.

IV. EXPERIMENT AND RESULT

A. Experiment Setting

1) Datasets: In this paper, we evaluate our method on the
dataset presented in [3]. This dataset collected the head motion
data (recorded by Euler angles) of 153 volunteers when they
was watching 16 clips of 360-degree videos covering a variety
of scenes, such as sports activities and landscape. Most of the
volunteers only viewed part of the 16 clips, and there are 985
views in total. After preprocessing, the head movements were
sampled 10 times per second, and each view recorded 289
samples. Thus, the dataset includes 285665 samples of the
head motion in total. For the CNN and RNN model, we use
80% of the data for training, 20% of the data for testing.

2) Metric: To evaluate the accuracy of viewport prediction,
we adopt three metrics, namely, mean error, root-mean-square
error (RMSE) and 99.9th percentile.

3) Implementation details: For the CNN-based model,
the first convolutional layer has 32 channels, all the other
convolutional layers have 64 channels. We use the Adam
optimization[8]. The momentum and weight-decay are set to
0.8 and 0.999 respectively. We set the batch size to be 128 and
train the model for 200 epochs. The learning rate is linearly
decayed from 1e− 3 to 1e− 4 in the first 100 epochs.

For the RNN model, we train RNN with hidden state size
being 256. The optimization method is the same with the
CNN-based model. We set the batch size to be 128 and train
the model for 500 epochs. The learning rate is linearly decayed
from 1e− 3 to 1e− 4 in the first 250 epochs.
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Fig. 4. The result of Naive, linear regression (LR), neural network (NN) and CNN (proposed model) in terms of mean error, rmse and 99.9th.

For the CFVT model, we resize all images to 1800× 900,
and set the bounding box of the viewpoint to be 10× 10. Be-
sides, we use the feature maps of the first and last convolution
layer of VGG-M network[9].

For the fusion model, we investigate the prediction perfor-
mance by assigning different values for the weights www1 and
www2, and select the weights with best prediction results for each
prediction window.

B. Results

In terms of three metrics, we compare the prediction accu-
racy of our proposed CNN-based viewport prediction model
with three exisiting prediction models, that is, Naive, LR and
NN in the aforementioned dataset. As shown in Fig. 4, our
CNN model significantly improves the prediction accuracy,
especially when the prediction window being large. Compared
to NN model which performs best among the prior works, our
proposed CNN-based model improves the prediction accuracy
by 9% ∼ 27% in all the three metrics, and has up to
69% improvement in contrast to the baseline model, i.e., the
Naive model. This indicates that the CNN model has stronger
nonlinearity fitting ability and performs better for the large
prediction window.

Furthermore, we compare the performance of RNN, CFVT
and FM models for predicting viewport trajectory with respect
to mean error and RMSE. In Table 1, the result shows that the
CFVT model performs better than RNN model in the small
prediction window (0.1s ∼ 0.4s). By analyzing the viewport
trajectory generated by RNN and CFVT model, we find that
the CFVT’s output changes more slowly than RNN. In other
words, the auto-correlation of CFVT’s output is stronger than
RNN’s. Therefore, CFVT performs better for short prediction
window. The final viewport trajectory is closer to CFVT’s
output for small prediction windows (0.1s ∼ 0.9s), and closer
to RNN’s output for large prediction windows (1.0s ∼ 2.0s).
Compared to RNN, the prediction accuracy of fusion model
has been improved by up to 40%.

V. CONCLUSION

In this paper, we designed single viewport prediction model
based on CNN. Through exploiting the strong nonlinear fitting

TABLE I
THE MEAN ERROR AND RMSE OF VIEWPORT PREDICTION FOR THE

RNN, CFVT AND FUSION MODEL(YAW ANGLE IN DEGREE)

Mean Error RMSE
Trs RNN CFVT FM RNN CFVT FM w1

0.1 4.17 2.72 2.49 5.90 4.64 6.36 0.1
0.2 6.58 5.35 4.33 9.95 9.00 7.52 0.1
0.3 8.64 7.93 6.58 13.73 13.12 10.65 0.1
0.4 10.73 10.46 8.86 17.28 17.02 14.08 0.1
0.5 12.81 12.97 11.16 20.56 20.75 17.56 0.1
0.6 14.70 15.13 13.47 23.53 23.91 21.02 0.1
0.7 16.56 17.36 15.70 26.27 27.12 24.22 0.1
0.8 18.30 19.50 17.80 28.75 30.11 27.24 0.1
0.9 19.87 21.52 19.83 30.92 32.86 30.01 0.2
1.0 21.41 23.43 21.41 32.93 35.46 32.93 0.7
1.1 22.82 25.64 22.82 34.73 38.01 34.73 1.0
1.2 24.11 27.43 24.11 36.35 40.42 36.35 1.0
1.3 25.28 29.10 25.28 37.85 42.60 37.85 1.0
1.4 26.42 30.74 26.42 39.31 44.70 39.31 1.0
1.5 27.44 32.33 27.44 40.59 46.72 40.59 1.0
1.6 28.45 33.82 28.45 41.82 48.63 41.82 1.0
1.7 29.33 35.28 29.33 42.96 50.45 42.96 1.0
1.8 30.21 36.54 30.21 44.01 52.00 44.01 1.0
1.9 31.00 37.74 31.00 45.01 53.5 45.01 1.0
2.0 31.73 38.89 31.73 45.93 54.94 45.93 1.0

ability of CNN, our model outperformed the previous works.
Further, a RNN-based model is proposed to predict the view-
port trajectory which supported variable prediction window
size with low complexity. Finally, we developed a correlation
filter-based viewport tracker (CFVT) to perform content-aware
viewport prediction. The combination of the RNN and the
CFVT by a fusion model significantly improved the prediction
accuracy. How to extract features from the spherical image is
critical for content-aware viewport prediction. Applying VGG-
M network to the projected planar image may cause prediction
error because of the projection distortion. Our future work is to
explore the spherical CNN which can process spherical image
directly.
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