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ABSTRACT

The non-Euclidean geometry characteristic poses a challenge to
the saliency prediction for 360-degree images. Since spherical data
cannot be projected onto a single plane without distortion, existing
saliency prediction methods based on traditional CNNs are ineffi-
cient. In this paper, we propose a saliency prediction framework
for 360-degree images based on graph convolutional networks (Sal-
GCN), which directly applies to the spherical graph signals. Specif-
ically, we adopt the Geodesic ICOsahedral Pixelation (GICOPix)
to construct a spherical graph signal from a spherical image in
equirectangular projection (ERP) format. We then propose a graph
saliency prediction network to directly extract the spherical features
and generate the spherical graph saliency map, where we design
an unpooling method suitable for spherical graph signals based
on linear interpolation. The network training process is realized
by modeling the node regression problem of the input and output
spherical graph signals, where we further design a Kullback—Leibler
(KL) divergence loss with sparse consistency to make the sparseness
of the saliency map closer to the ground truth. Eventually, to obtain
the ERP format saliency map for evaluation, we further propose a
spherical crown-based (SCB) interpolation method to convert the
output spherical graph saliency map into a saliency map in ERP
format. Experiments show that our SalGCN can achieve comparable
or even better saliency prediction performance both subjectively
and objectively, with a much lower computation complexity.
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Figure 1: Different 2D projections of a spherical image.

1 INTRODUCTION

360-degree image/video that allows viewers to freely rotate their
heads to acquire an immersive experience is a new multimedia
form emerging in recent years. It has been widely applied to many
fields, such as virtual reality (VR), augmented reality (AR), and
autonomous cars [11]. This emerging trend of applications of 360-
degree images/videos has also attracted research interests in model-
ing and predicting the visual attention for 360-degree images, which
provides a fundamental support to facilitate different applications,
such as tile-based 360-degree video streaming [13], automatic pho-
tography [19], and viewpoint prediction [23].

Visual saliency prediction aims to predict the image area of hu-
man interest by simulating human visual preference. Recently ad-
vanced saliency prediction models for images are mostly developed
based on deep learning, where the development of convolutional
neural networks (CNNs) enables these deep learning-based visual
saliency prediction to achieve state-of-the-art performance in tra-
ditional 2D images/videos [7, 8, 14, 15]. However, these traditional
convolution kernels with a regular grid design cannot be directly
applied to deal with spherical features, which inevitably incurs
difficulties in applying CNNs to process spherical data with a non-
Euclidean geometry. To address this problem, many practical solu-
tions have been proposed for processing 360-degree (or spherical)
images. For example, some works proposed to convert 360-degree
images into 2D images through some projection methods, which
then enabled application of traditional 2D saliency prediction meth-
ods to process the projected 360-degree images [1, 12, 18]. Two
commonly used projection method, i.e., equirectangular projection
(ERP) and cubemap projection (CMP), are shown in Figure 1. Along
another research direction, there have also been works dedicated to
re-designing the convolution kernel to make it suitable for spherical
images, which then allowed to directly perform saliency prediction
on 360-degree images [25].

Although the above solutions provide two possible directions
for spherical image saliency prediction, some problems are still
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remaining and needed to be addressed. 1) With either the ERP or
CMP projection method, a projection distortion will be inevitably
incurred when projecting the spherical image onto a 2D plane. For
example, the ERP projection introduces a large amount of image
distortion at the two poles. In comparison, the CMP projection
projects a spherical image onto 6 planes, which therefore incurs
a lower distortion than the ERP projection. However, due to the
need to deal with the six planes separately, the CMP projection
introduces redundant image boundaries which makes the saliency
map discontinuous at the stitching boundary [12]. 2) To further
reduce the image distortion caused by CMP projection and thus al-
leviate the image boundary, some works use more projection planes
to project a 360-degree image, which however increases greatly
the computation complexity [1, 21]. 3) In order to re-design the
convolution kernel to make it suitable for spherical images, current
methods need to interpolate the feature maps during convolution,
which would accumulate the interpolation error when the network
deepens and eventually lead to a poor prediction accuracy [25].

To address the above problems, in this paper, we propose a
saliency prediction architecture for 360-degree images based on
graph convolutional networks (SalGCN). Specifically, we use the
Geodesic ICOsahe-dral Pixelation (GICOPix)-based graph signal
construction method to convert the original spherical images and
their ground truth saliency maps in ERP format into corresponding
spherical graph signal representations. We then propose a graph
saliency prediction network that is able to directly extract the spher-
ical features and build up the mapping between the input spherical
graph signal representation of the original spherical image and the
output spherical graph saliency map. The proposed graph saliency
network adopts a basic encoder-decoder structure, where we de-
sign the spherical graph unpooling layer (SG-Unpooling) based on
linear interpolation for upsampling of the spherical graph signals.
The network training is realized by modeling the node regression
problem of the input and output spherical graph signals, where
we further design a KL divergence loss with sparse consistency to
make the sparseness of the saliency map closer to the ground truth.
Eventually, to obtain the ERP format saliency map for evaluation,
we further propose a spherical crown-based (SCB) interpolation
method to convert the output spherical graph saliency map into a
saliency map in ERP format.

The main advantages of the proposed SalGCN is three-fold. 1)
Our method of extracting spherical features using GCNs funda-
mentally addresses the projection distortion problem. 2) Since the
proposed saliency prediction network processes directly on the
spherical graph signals, the redundant image boundaries and re-
peated computations on different projection planes are avoided.
3) The entire graph convolution process will not interpolate the
feature map, which then prevents interpolation errors from ac-
cumulating as the number of network layers increases. As a ver-
ification, experiments show that even at an input size that is 3
order-of-magnitude smaller than the other comparison methods,
our SalGCN can still achieve a comparable performance with the
best method (SalGAN360 [1]), with the running time also reduced
by 3 order-of-magnitude.

The rest of this paper is organized as follows. Sections 2 and
3 describe current researches of saliency prediction models and
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preliminaries, respectively. Section 4 details the proposed frame-
work. Section 5 shows the subjective and objective performance
evaluation. Finally, concluding remarks are given in Section 6.

2 RELATED WORK
2.1 Extending 2D Saliency Prediction Models

Works within this branch extend the existing saliency prediction
models from 2D to spherical images by projecting them onto a 2D
plane through some projection methods and then applying these
well-performed saliency prediction models proposed for 2D images.
Lebreton et al. [9] proposed GBVS360 for saliency prediction of 360-
degree images. The core idea is to leverage the graph-based visual
saliency (GBVS) approach [6] (a heuristic approach for generating
saliency map based on the Markov chain) for multiple viewport
images generated by spherical images, and then project the view-
port back to the ERP plane to obtain the saliency map. Ling et al.
[10] proposed the color dictionary sparse representation (CDSR)
approach to generate saliency maps, which used an over-complete
color dictionary to sparsely represent multiple sub-images divided
by the ERP format image, and finally stitching into the full saliency
map. Monroy et al. [12] applied SalNet [5] to extract saliency for
each face of the CMP format image. Different from that, Chao
et al. [1] applied SalGAN [14] to the 486 cut planes projected by
360-degree image to achieve better performance.

In general, these works need to perform saliency prediction on
multiple 2D images, resulting in an inevitable projection distortion
and a very high computation complexity. Although the use of CMP
projection can balance the amount of calculation and image dis-
tortion, it will additionally introduce redundant image boundaries,
which causes discontinuities of the saliency map at stitching bound-
aries. In addition, because the same object may have different shapes
at different projection angles, it is unreasonable to use the same con-
volution kernel to process different projection planes. In our work,
instead of projecting a spherical image onto multiple 2D planes, a
spherical graph signal representation is directly constructed from
the original spherical image, and then spherical features are ex-
tracted through a graph convolutional network. This approach not
only naturally possesses the graph convolution of weight sharing,
but also avoids introducing redundant image boundaries and huge
computation complexity. More importantly, it completely addresss
the distortion problem caused by image projection.

2.2 Re-designing the Convolution Kernel

Alternatively, some works re-design the convolution kernel to make
it suitable for processing the spherical image (or its 2D projection
in ERP format), and then perform saliency prediction directly on
this spherical image (or its ERP projection). Zhang et al. [25] pro-
posed a spherical U-net [17] suitable for ERP format images for
saliency prediction, where the convolution kernel of the spherical
convolution was defined at the pole position, and the convolution
operation was realized by continuously re-sampling the feature
map to adapt the shape of the convolution kernel. However, since
the pixel positions of feature map do not coincide with the convolu-
tion kernel, re-sampling feature maps will require interpolation. Su
et al. [20] experimentally proved that the interpolation of feature
maps would affect the performance of deep networks. At the same
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Figure 2: The proposed SalGCN framework with three modules: 1) the GICOPix-based graph signal construction converts an
ERP format image to a spherical graph signal representation, 2) the graph saliency prediction network generates a spherical
graph signal representation for the saliency map based on the input spherical graph signal, and 3) the spherical crown-based
(SCB) interpolation finally reconstructs the resulting saliency map in ERP format from the spherical graph saliency signal.

time, spherical U-net desires a very large demand for computing
resources (e.g., four NVIDIA Tesla P40 GPUs). And due to the in-
fluence on feature map interpolation, the spherical U-net can only
achieve the same performance on the Salient360 [16] dataset as
the traditional method directly applied to the ERP format image.
Different from the spherical U-net, our proposed method uses graph
convolution to extract spherical features, such that the interpola-
tion operation of the feature map will not be introduced in the
convolution process. In addition, due to the use of the ChebNet as
the graph convolutional layer, our network does not rely on a large
number of computation resources.

3 PRELIMINARIES

We define a spherical image as S;(0, ¢), where 6 € [0, 7] and
¢ € [0,2n] represent the latitude and longitudes of a spherical
point, respectively. Then, its ERP projection with size W X H can
be denoted as E;(x,y) € R"V*H*3 where the last dimension cor-
responds to the three channels of the RGB image. We use the GI-
COPix scheme [22] to obtain an undirected and connected graph
G(V,E, W) from E;(x,y), where V represents a vertex set of size
N, & represents an edge set, and W is a weighted adjacency matrix
of size N x N with wj ; being the connection weight between the
vertices 0; and v;. In this paper, the connection weight of any two
neighboring nodes wj ; is set to 1, and the normalized graph Lapla-
cian is defined as L = I — D_l/ZWD_l/Z, where D € RNXN i 3
diagonal degree matrix of the weight matrix with d;; = Z?L 1 Wij
and I is the identity matrix of order N.

In order to make the GCN have CNN-like localization character-
istics, we use the same ChebNet as in SGCN [22] to approximate the
convolution kernel by recursively computing a Chebyshev polyno-
mial. For a graph signal x, the graph spectral convolution is defined
as

K-1 _
y=() 6T (D), (1)
k=0

where K is the order of the Chebyshev polynomial, 8y denotes
the Chebyshev polynomial coefficient corresponding to the learn-
able parameter, and L= 2L/ Amax + IN with Apax denoting the
largest eigenvalue of L. Thus, Ty, (L) € RN*N represents the Cheby-
shev polynomial that can be computed by the recursive relation
Ti(L) = 2LT,_{ (L) — Ty_o(L) with Ty = Iy and T; = L. The main
benefit of this approach is that it greatly reduces the learning com-
plexity to (O(K |e[)) and constrains the spectral convolution defined
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Figure 3: Graph signal construction process from G to G;.

in Equation (1) to be K-localized, i.e., the spectral convolution op-
eration relating to the center vertex only depends on all the vertex
values and edge weights on a path of length k < K.

4 PROPOSED METHOD

The overall framework of the proposed SalGCN is shown in Figure 2,
which comprises three modules in cascade. First, the original spher-
ical image in ERP format is converted to a spherical graph signal
representation by the Geodesic ICOsahedral Pixelation (GICOPix)-
based graph signal construction module. We then design a graph
saliency prediction network to generate a spherical graph signal
representation for the saliency map of the same size as the graph
signal representation for the spherical image. Finally, we propose a
spherical crown-based (SCB) interpolation module to reconstruct
the ERP format saliency map from its spherical graph signal rep-
resentation. In addition, we model the network training as a node
regression problem in the graph signal, and propose a KL loss with
sparse consistency for network training.

4.1 Problem Formulation

The proposed graph convolutional network-based image saliency
prediction aims to build up a mapping between the spherical graph
signal representation of the input spherical image and the spherical
graph signal representation of the output saliency map. Here, we
denote Ng as our deep graph convolutional network and GICOPix
as the GICOPix-based graph signal construction operation, then
the objective of saliency prediction for a 360-degree image can be
expressed as:

N
min > dist |GICOPix(Egt) [0:], NG (GICOPix(E) [v7]]. (2)
k=0

where Eg; and E; represent the ground truth of saliency map and
the input RGB image in ERP format, respectively, and v; represents
the t-th node in the graph signal. Therefore, the entire optimization
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Figure 4: Architecture of the proposed graph saliency prediction network.

process actually completes the node regression task of the spherical
graph signal representation.

4.2 GICOPix-based Graph Signal Construction

In the proposed SalGCN framework, we first leverage the GICOPix-
based graph signal construction module [22] to construct a spherical
graph signal representation from the original 360-degree image in
ERP format. As shown in Figure 3, the workflow is as follows. 1)
We first construct the largest internal geodesic icosahedron con-
sisting of 20 equilateral triangles for the spherical signal S, then
all 12 vertices of the icosahedron are used as the graph sampling
points for the spherical signal to generate the level 0 graph signal
Go. 2) We further divide each face (isolateral triangle) of the initial
geodesic icosahedron into 4 equilateral triangles. By connecting the
sphere center and the newly generated vertices of these equilateral
triangles and extending these connecting lines to the sphere, we
then generate some new graph sampling points. The newly gener-
ated graph sampling points on the sphere are merged with Gy to
obtain the Level 1 graph signal G;. 3) We repeat the previous step
to generate more levels of graph signal, denoted as G, [ € N. The
relationship between the level index [ and the number of vertices
of the graph signal is Nj = 10 x 22 + 2.

4.3 Graph Saliency Prediction Network

4.3.1  Network Structure. Inspired by U-net [17], we propose a deep
graph convolutional network for graph saliency prediction by using
the basic encoder-decoder structure, as illustrated in Figure 4. The
input of the network comes from the output of the GICOPix-based
graph signal construction module, which is the spherical graph
signal representation converted from the orignal spherical image
in ERP format. For the encoding part, we adopt five graph con-
volutional layers, with a rectified linear unit (ReLU) used as the
activation function for each graph convolutional layer. In addition,
the first four graph convolutional layers are followed with a graph
pooling layer as in [22] to obtain hierarchical representations of
the graph signal. For the decoding part, we also use ReLU as the
activation function of five graph convolutional layers. In addition,
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we propose a graph unpooling layer to be added before the first
four convolutional layers. In particular, the input for each of these
four graph convolutional layers is obtained by concatenating the
output of its previous unpooling layer and the output of the cor-
responding graph convolutional layer with the same output size
from the encoding part.

In summary, the proposed graph saliency prediction network
has a total of ten graph convolutional layers, four pooling layers,
and four unpooling layers. The output of the network is a spherical
graph signal representation for the predicted saliency map, which
will be then fed into the SBC interpolation module to generate a
saliency map in ERP format.

4.3.2  Graph Pooling Layer. Multi-scale feature maps are an inte-
grated part of the network. In this paper, we adopte the rotation-
equivariant pooling layer proposed in [22], which can be viewed as
an inverse process of the graph construction, i.e., G; is coarsened to
Gj_1 by discarding newly added vertices in the process from G;_;
to G;. The change in the number of vertices in the pooling process
can be approximated as Nj/Nj_; ~ 4, which can be considered as a
parallel to the pooling operation with stride = 2 in the traditional
CNN.

4.3.3 SG-Unpooling Layer. Deep learning-based image saliency
prediction schemes usually use a fully convolutional network (FCN)
for end-to-end training, which thus requires that the output size of
the network is consistent with the input size. To satisfy this, a com-
mon practice is to use the unpooling layer to upsample the feature
map. To the best of our knowledge, there is little existing work on
the unpooling layer design for graph convolutional networks. In
this paper, we propose a novel unpooling operation for spherical
graph signals, which is named SG-unpooling.

Benefiting from the GICOPix-based method to construct the
graph signal, we adopt a graph unpooling strategy by using linear
interpolation. Specifically, using V; to denote the vertex set of the
spherical graph at the [-th level, the graph unpooling process is
defined as
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where v]l< represents the k-th vertex in the graph at the I-th level,

the operation Pos(-) returns the coordinates of the vertex v on
the sphere, and the operation Nei(-) returns the two neighboring
vertices of vertex ol in G;_. The specific unpooling operation is
graphically illustrated in Figure 5.

The proposed graph unpooling operation does not change the
value of the original vertex in the preceding graph level, but gener-
ates a value for the newly generated vertex in the current graph
level by linear interpolation, which is different from interpolation
of the feature maps during convolution and also achieves a better
performance than simply setting the values of newly generated
vertices to 0. This advantage has also been demonstrated through
the results in Section 5.4.

4.3.4 KL Loss With Sparse Consistency. Although the KL diver-
gence is widely used in regression tasks, traditional KL divergence
can only measure the distance between distributions. For saliency
prediction, if only the KL divergence is used to measure the differ-
ence between the ground truth of the spherical graph saliency map
Ggt(vt) and the output spherical graph saliency map Gs(v;) of the
network, the trained network will produce a denser saliency map.
In Equation (5), for example, when Gg;(v;) is very small, even if
the difference between Gg; (vy) and Gs (vy) is large, it will be given
a very small weight by Gg;(v¢), such that the large difference be-
tween Gg; (vr) and Gs (vy) is not reflected in the loss function, which
would in turn affect the network training. In order to make the
saliency map’s sparseness closer to the real situation, we propose a
KL divergence with sparse consistency, as

A 1
KLse = mKLs + mKLhist’ )
N
Ggt(0r)

KLs = ) Ggr(vr) log| S——|, °
s ; gt(vt) g Gs(02) )

255 i i

' ) hist(Gg;) (i)
KLpiss = Z hist(Ggt)(i) log chs)(l)]’ ©

i=1
where A is a hyper-parameter used to control the weights of two KL
divergences. KL represents the KL divergence between the ground
truth of the spherical graph saliency map Gg; and the output spher-
ical graph saliency map G of the network. KLy ;s represents the
KL divergence between the histogram of Gg; and the histogram
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Figure 6: The spherical crown centered at (x;, y;, z;).

of Gs, where the number of groups in the histogram is 255. The
entire loss function in Equation (4) can be understood as adding
a penalty term to the traditional KL loss. Equation (5) makes the
spatial distribution of the network output continuously approach
the ground truth saliency map, while Equation (6) makes the nu-
merical distribution of the network output continuously approach
the ground truth saliency map.

4.4 Spherical Crown-based (SCB) Interpolation

The ultimate goal of 360-degree image saliency prediction is to
obtain an ERP format saliency map. Therefore, we further propose a
novel spherical crown-based (SCB) interpolation method to convert
the output spherical graph saliency map of the graph saliency
prediction network to the ERP format saliency map.

As shown in Figure 3, the constructed spherical graph signal
contains a relatively uniform distribution of sample points on the
sphere. Due to the distortion introduced by projecting from a non-
Euclidean spherical space to the Euclidean 2D plane, however, these
spherical points after projection will become non-uniformly dis-
tributed points in the ERP format image. Therefore, the proposed
SCB interpolation method essentially completes the conversion
from non-uniform sample points to uniform grid points in the ERP
format image. Since the spherical graph signal has a relatively uni-
form distribution on the sphere, we implement the interpolation
process on the sphere. Denoting E, (m;, n;) as the pixel value to
be interpolated at position (m;,n;),1 < i < W X H in the ERP
grid, the Cartesian coordinate of the corresponding spherical point
(xi,yi, zi) can be determined by the inverse ERP projection and
written as

Xj = sin(% X 1) COS(M X 27),
yi = sin(% X 1) sin(% X 271), (7)
zi = cos(% X TT).

Then, Pg, = {(xi,yi,2)|V1 < i < W X H} represents the com-
plete set of Cartesian coordinates of the spherical points corre-
sponding to the set of ERP grid points. Furthermore, we denote
the output of graph saliency prediction network as Gs (V) where
|V| = N, and the corresponding Cartesian coordinate set as Pg_ =
{(xt, yz. zt)|VYor € Gs(V). As shown in Figure 6, on a sphere that is
with a radius of R and centered at the origin, we fixv; = (xj, yi, zi) €
Pg, as the center point to construct a spherical crown with a height
of R[1—cos(a)], and add the points in G (V) within this spherical
crown to the set U. Without loss of generality, here we set R = 1
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and @ = 27/(W — 1), and then get the bottom plane equation of
the spherical crown centered at v; = (x;, y;, zi) as

@)

which is perpendicular to vector (x;,y;, z;). If a point (x,y, z) is
within this spherical crown centered at (x;, y;, z;), then it should
be separated with the origin by the plane defined in Equation (8),
which mathematically can be expressed as

xi(x —xjcosa) +yi(y —yicosa) + zi(z — zi cos ) =0,

©)

Finally, we interpolate the pixel value of v; = (xj,y;,z;) by the
inverse distance weighted averaging, and use this interpolated pixel
value to represent E, (mj, n;j), as

Eo(mi, ni) = Z

vrelU

(cosa —xjx —yiy — ziz) cosa < 0.

Gs(v)
1 s

(10)
(D?(0r) +€) Yo, et Brrojre

where D(v;) denotes the Euclidean distance between vertices vy and
v; and e is a sufficiently small constant (set to 1e — 8 in this paper)
to prevent the denominator from being zero. Equation (10) can be
understood as first obtaining weights for all vertices in U according
to their distances from v; = (x;, y;, z;), and weighted averaging the
corresponding vertex values of v; € U to obtain E,(m;, n;). We
visualize the spherical graph saliency map as a scatter plot and
show the interpolation effect of the proposed SCB interpolation
method in Figure 7, demonstrating that it can recover the original
saliency map in ERP format from the spherical graph saliency map.

5 EXPERIMENTS
5.1 Experiment Setup

Our graph saliency prediction network is implemented on the Ten-
sorFlow framework. To train and test this network, we use head-eye
movements images from Salient360 dataset [16], including 40 train-
ing images and 25 test images in ERP format. For network training,
we apply the GICOPix-based graph signal construction to obtain a
spherical graph signal representation of 5-level (10242 points) for
both the ERP format spherical images and ground truth saliency
maps. We use the Adam optimizer to train the model for 20000
epochs at a fixed learning rate of 0.0001 and with a batch size 5. In
order to make the model better trained, we choose A = 1in Equation
4. To prevent overfitting, we add a batch normalization layer and a
dorpout rate of 0.9 after each convolutional layer, and add the Ly
regularization term with a weight of 5e-5 to the loss function. The
entire training process is performed on a single Nvidia GTX1080Ti
GPU (11GB).
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Table 1: Performance evaluation of different methods on
Salient360 dataset [16], where different index represents
a different method: (1)-BMS, (2)-BMS360, (3)-GBVS360, (4)-
SalNet360, (5)-SalGAN360, (6)-SalGCN (Ours). The bold num-
ber represents the best performance, and the underlined
number represents the second-best performance. T and |
show the direction of higher accuracy.

Metric (1) ) (3) (4) (5) (6)
KL| 0.554 0.526 0.560 0.494 0.431 0.428
ccr 0.544 0.503  0.440 0.536 0.642 0.589
SIMT 0.647 0.661 0.645 0.669 0.681 0.686
NSST 0.864 0.767 0.667  0.882 1.122 0.945
AUCT 0.719  0.699 0.676  0.720 0.772 0.736
Param. - - - 7.26M 31.78M 8.71M
Input.  0.08M 0.08M - 0.46M 23.89M 0.01M
Time. - - - 8.55s  738.92s  0.63s

5.2 Metrics

For 360-degree image saliency prediction, it is unreasonable to di-
rectly evaluate the predicted saliency map in ERP format, since
latitudinal distortions are introduced by the ERP projection. In-
stead, we use the toolbox provided by [4] for the evaluation, where
a saliency map is projected back to the sphere with uniformly
sampled points and all metrics are calculated only at these sam-
ple points. Here, we select five metrics to evaluate our proposed
SalGCN: Kullback-Leibler divergence (KL), linear correlation coeffi-
cient (CC), similarity measure (SIM), normalized scanpath saliency
(NSS), and area under the curve (AUC). Except the KL metric, a
larger value of all the remaining metrics would indicate a more
accurate prediction for the saliency.

The evaluation of image saliency prediction usually requires a
comparison between the predicted saliency map with the ground
truth saliency map after being blurred by a Gaussian filter [7].
In this paper, we use the proposed SCB interpolation method to
upsample the output ERP format saliency map to a resolution of
1024 X 2048, and then blur the saliency map with a Gaussian filter
with kernel size of 64. This choice of Gaussian kernel size is a
common setting, which also guarantees the best performance of
the proposed SalGCN.

5.3 Comparison To State-of-the-arts

To verify the superiority of the proposed SalGCN, we compare its
performance with the following state-of-the-art methods, includ-
ing BMS [24], BMS360 [9], GBVS360 [9], SalNet360 [12], and Sal-
GAN360 [1]. Among them, BMS, BMS360 and GBVS360 are heuristic
methods, while SalNet360 and SalGan360 are deep learning-based
methods. For all learning-based methods, we also compare the
amount of parameters, model operation time, and the number of
input pixels to the neural network.

Table 1 shows the performance evaluation of different methods
on Salient360 dataset [16], where the bold and underlined numbers
represent the best performance and the second-best performance,
respectively. It can be seen that our proposed SalGCN achieves the
best prediction performance in terms of KL and SIM, and the second-
best prediction performance in terms of CC, NSS and AUC. From the
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Figure 8: Saliency maps of 6 test images randomly selected from Salient360 dataset [16] and the prediction results.

perspective of model parameters, the amount of our SalGCN is sim-
ilar to that of SalNet360 and far less than that of SalGAN360. These
comparison results demonstrate that our SalGCN is not inferior
to the existing deep neural network-based models in performance.
In addition, it can be found that SalGCN achieves a better perfor-
mance in distribution-based metrics (e.g., KL), but a slightly lower
performance in location-based metrics (e.g., AUC, NSS). This is due
to the limited research progress of the graph convolutional network
itself, i.e., currently it is not possible to process an arbitrarily large
graph signals with deep networks. However, it is worth noting that
in this paper, we construct a graph with only 10242 nodes, while
in SalNet360 and SalGAN360, 460800 (6 X 320 X 240) and 23937024
((9x9x6+1) %256 X 192) pixels are required as the input, re-
spectively, to get the saliency map of a 360-degree image. In other
words, the input size of our SalGCN is order-of-magnitude lower
than those of SalNet360 and SalGAN360, which indicates a seriously
unequal amount of information needed for prediction. Even though,
our SalGCN outperforms SalNet360 in all metrics, and achieves the
best performance among all models in the KL and SIM metrics,
which demonstrates that SalGCN can fit the spherical distribution
very well and has a great potential in the position-based metrics.
In addition, thanks to the smaller network size and input size, and
the direct processing of the entire spherical graph signal through
the proposed saliency prediction network, SalGCN is much less
computationally expensive than SalNet360 and SalGAN360. Experi-
ments show that under the same setting of computation resources
and test images, the average model operation time of SalGCN for
each 360-degree image is only 0.63 second, while SalNet360 and
SalGAN360 require 8.55 seconds and 738.92 seconds, respectively.
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In order to visually compare the saliency maps generated by
different methods, we randomly selected 6 test images from the
Salient360 dataset, and show the ERP format saliency maps gen-
erated by different methods in Figure 8. It can be seen that our
SalGCN can predict the saliency map very well. Specifically, as
shown in the last two columns, our SalGCN can better capture the
saliency in the high latitude regions.

5.4 Ablation Studies

To further verify the effectiveness of our SalSGCN, we design the fol-
lowing baselines to evaluate the contributions and gains introduced
by various components in our framework. (1) CNN based U-net: We
use CNN to build up a standard U-net, input 128 X 256 images in
ERP format directly to the network, and use the mean square error
(MSE) loss for network training. (2) SphereNet [2] based U-net: We
change the convolutional layer in the above CNN based U-net to
Spherenet, while other settings remain the same. (3) SalGCN with
gUnpool [3]: We replace all the unpooling layers in our SalGCN
with the gUnpool layer (that simply adds zero to the upsampling
position) in [3], and keep the other settings unchanged. (4) SalGCN
with standard KL divergence: We train our SalGCN using standard
KL divergence in Equation (5). (5) SalGCN with less input nodes: We
train our SalGCN using 2562 input nodes. (6 )SalGCN with more
input nodes: We train our SalGCN using 40962 input nodes.

The results of ablation studies are shown in Table 2. The perfor-
mance of Baselines (1) and (2) are much worse than SalGCN in all
metrics. In addition, we surprisingly find that Baseline (1) using
CNN even outperforms Baseline (2) using SphereNet. We believe
that the main reason for this phenomenon is that the convolutional
layer of SphereNet needs to interpolate the feature map, which
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Table 2: Performance evaluation under different baselines.

Baseline KLl CCT SIMT NSST AUCT
(1) 0.620 0525 0.663 0.791 0.698

() 0.790 0403 0.626 0.609 0.654

(3) (Ours) 0477 0565 0.678 0.932 0.732
(4) (Ours) 0462 0573  0.680 0.902 0.729
(5) (Ours) 0.598 0527 0.658 0.856 0.716
(6) Ours) 0415 0.611 0.703 0.972 0.743
SalGCN (Ours) 0.428 0.589 0.686 0.945  0.736

leads to the continuous accumulation of errors as the network deep-
ens. At the same time, it also shows that the convolution operation
that needs to interpolate the feature map is not suitable for deep
networks. Our SalGCN not only takes into account the distortion
problem caused by the projection of the spherical image onto the
2D plane, but also avoids introducing the interpolation operation of
the feature map in the convolution, thereby achieving a much better
performance than Baselines (1) and (2). Baseline (3) also presents a
certain performance gap than our SalGCN. This is due to our graph
unpooling operation that retains the position information of the old
vertices and calculates the value of the newly generated vertices
through linear interpolation. The results of Baseline (4) prove that
our proposed KLg. loss plays a positive role in network training. Fi-
nally, the results of Baselines (5) and (6) prove that the performance
of the proposed SalGCN can be further improved by increasing the
number of input nodes, which demonstrates a great potential of
our SalGCN in terms of further improving the prediction accuracy.

5.5 Rotation Equivariance

Benefiting from the Chebyshev polynomial filters, SalGCN is able to
achieve the rotation equivariance of the spherical signal. As shown
in Figure 9, we traine SalGCN on the training data without rotation
and test it on the test image with a certain rotation. Specirically, we
rotate the test image by %, %, 5 along the 0 direction, respectively.
The results show that SalGCN has a good adaptability to the rotation
of the spherical images.

5.6 Stitching Boundary Comparison

It is also worth noting that because SalGCN directly processes the
image on the spherical surface, the image boundary is not intro-
duced in the convolution process, which fundamentally eliminates
the problem of redundant boundaries generated by the traditional
CNN method. In Figure 10, we show the performance compari-
son between our SalGCN and the traditional CNN-based method
(SalNet360, SalGAN360) on the image stitching boundary. Among
them, the orange solid lines in the bottom row represent the im-
age boundary due to CMP projection. It can be clearly seen that
because SalNet360 needs to project the spherical image onto multi-
ple tangent planes and process them separately, the saliency map
after stitching has very obvious image boundaries. For SalGAN360,
due to the use of 486 directions of projection, the 2D images in
adjacent projection directions have a lot of overlapping area in
content, which makes the boundary problem alleviated. In contrast,
our SalGCN has no such problems.
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6 CONCLUSION

In this paper, we proposed a framework for predicting the saliency
of spherical images using graph convolutional networks. We achieved
saliency prediction by modeling the saliency prediction task of
spherical images into the node regression task of spherical graph
signals. We also designed the unpooling operation of the spherical
graph signal based on linear interpolation to achieve the upsam-
pling of the spherical graph signal. Finally, we proposed a spherical
crown based interpolation method to convert the spherical graph
signal into an ERP format saliency map. Experiments have shown
that our SalGCN could achieve comparable or even better saliency
prediction accuracy with a much less computation complexity.
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